A Machine Learning Approach to Coreference Resolution of Noun Phrases

نویسندگان

  • Wee Meng Soon
  • Hwee Tou Ng
  • Chung Yong Lim
چکیده

In this paper, we present a learning approach to coreference resolution of noun phrases in unrestricted text. The approach learns from a small, annotated corpus and the task includes resolving not just a certain type of noun phrase (e.g., pronouns) but rather general noun phrases. It also does not restrict the entity types of the noun phrases; that is, coreference is assigned whether they are of "organization," "person," or other types. We evaluate our approach on common data sets (namely, the MUC-6 and MUC-7 coreference corpora) and obtain encouraging results, indicating that on the general noun phrase coreference task, the learning approach holds promise and achieves accuracy comparable to that of nonlearning approaches. Our system is the first learning-based system that offers performance comparable to that of state-of-the-art nonlearning systems on these data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corpus based coreference resolution for Farsi text

"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...

متن کامل

First-Order Probabilistic Models for Coreference Resolution

Traditional noun phrase coreference resolution systems represent features only of pairs of noun phrases. In this paper, we propose a machine learning method that enables features over sets of noun phrases, resulting in a first-order probabilistic model for coreference. We outline a set of approximations that make this approach practical, and apply our method to the ACE coreference dataset, achi...

متن کامل

Coreference Resolution with Decision Tree

Coreference resolution is the task to determine whether two expressions in text refer to the same entity. In this paper, we present an approach to coreference resolution of noun phrases of newswire based on machine learning approach with decision tree. We designed 12 features such as plurality and gender, and modified the C4.5 decision tree builder to generate a decision tree based on our train...

متن کامل

Global Learning of Noun Phrase Anaphoricity in Coreference Resolution via Label Propagation

Knowledge of noun phrase anaphoricity might be profitably exploited in coreference resolution to bypass the resolution of non-anaphoric noun phrases. However, it is surprising to notice that recent attempts to incorporate automatically acquired anaphoricity information into coreference resolution have been somewhat disappointing. This paper employs a global learning method in determining the an...

متن کامل

A Knowledge-Based Approach for Unsupervised Chinese Coreference Resolution

Coreference resolution is the process of determining the entity that noun phrases refer to. A great deal of research has been done on this task in English, using approaches ranging from those based on linguistics to those based on machine learning. In Chinese, however, much less work has been done in this area. One reason for this is the lack of resources for Chinese natural language processing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Linguistics

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2001